Martin, D. S. Jr, Bonte, J. L., Rush, R. M. & Jacobson, R. A. (1975). Acta Cryst. B31, 2538-2539.

Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 1972-1974

$Na_2NbO_2AsO_4$, a new niobium monoarsenate

Khaled Hizaoui,^{*a*} Noureddine Jouini,^{*b*} Ahmed Driss^{*a*} and Tahar Jouini^{*a*}

^aDépartement de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia, and ^bLaboratoire de Chimie Divisée et Catalyse, Université de Paris VII, 2 Place Jucieu, 75250 Paris CEDEX 05, France. E-mail: ahmed. driss@fst.rnu.tn

(Received 9 August 1999; accepted 29 September 1999)

Abstract

The two-dimensional framework of disodium dioxoniobium arsenate is built up from infinite [NbO₆] chains extending along the *c* axis, linked together by AsO₄ tetrahedra. Each AsO₄ tetrahedron is bonded to three different NbO₆ octahedra, two of which belong to the same chain. The Na⁺ cations are located between the covalent [NbAsO₆]²⁻ layers in hexagonal channels. The structure is compared with those of $MM'XO_6$ (M = K, Tl; M' = Sb, Nb; X = P, As) and NaVOAsO₄.

Comment

In the course of our investigation of the Na₂O-Nb₂O₅-As₂O₅ system, in a search for open framework structures, we have reported previously the tunnel compound Na₃NbO(AsO₄)₂ (Hizaoui et al., 1999). The present report deals with a new compound found in the same system, i.e. Na₂NbO₂AsO₄. Dioxoniobium disodium arsenate has a layer structure, built up from chains of trans-corner-sharing NbO₆ octahedra with alternating short and long Nb—O bonds; Nb—O5 = 1.882(2) Å and Nb—O5ⁱ = 2.012 (2) Å [symmetry code: (i) x, 1 - y, $\frac{1}{2} + z$]. These infinite chains are interconnected laterally in the (100) plane by AsO₄ tetrahedra (Fig. 1). Each AsO₄ tetrahedron bridges two successive NbO₆ octahedra of the same chain by sharing O2 and O3 atoms, and bridges a third NbO₆ octahedron of an adjacent chain through O4. The free O-atom apices, O1 and O6, point alternately up and down the layers. This arrangement of polyhedra delimits distorted hexagonal windows connecting the interlayer spaces. In two suc-

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved cessive layers related by the 2_1 axis, the windows form tunnels parallel to the [101] and $[\overline{1}01]$ directions, where the Na3⁺ cations reside (Fig. 2). The Na1⁺ and Na2⁺ cations are located in the interlayer space. The NbO₆ octahedra are slightly distorted, as in many niobium(V) arsenates; the Nb—O bond lengths range from 1.765 (2) to 2.210(2) Å [average 2.050(2)Å]. The AsO₄ tetrahedron is almost regular, with As-O distances ranging from 1.652 (2) to 1.705 (2) Å and O-As-O angles ranging from 108.2(1) to 113.5(1)°. As is usual in most condensed arsenate ions, the unshared O atom, O1, forms a shorter bond than the other three O atoms. The bond-valence sums (Brown & Altermatt, 1985) for the Nb^V and As^V atoms of 5.042 and 4.984, respectively, are in good agreement with their formal oxidation states. The Na₂NbO₂AsO₄ structure exhibits a relationship with K₂SbPO₆ (Lachgar et al., 1986), K₂SbAsO₆ (Botto & Garcia, 1989) and NaVOAsO₄ (Haddad et al., 1992). Indeed, one can pass from the structure of K_2 SbPO₆ (one-dimensional) to that of Na₂NbO₂AsO₄ (two-dimensional) by separating one of the two O atoms of the edge shared between successive SbO₆ octahedra and forming an Sb—O—P bridge with neighbouring chains. The structure of NaVOAsO₄ (three-dimensional) can be derived from that of Na₂NbO₂AsO₄ (twodimensional) by forming mixed Nb-O-As bridges between successive layers; the O1 apex is shared with the O6 apex, leading to the elimination of one O atom. Electrical neutrality requires the removal of two Na⁺ cations from the interlayer space. Comparison with the analogous compound Tl₂NbPO₆ (Fakhfak et al., 1993) shows that Na₂NbO₂AsO₄ and Tl₂NbPO₆ are both twodimensional compounds; the two structures differ in the type of connection between the polyhedra.

Fig. 1. DIAMOND (Bergerhoff, 1996) view along the c axis of the crystal structure of Na₂NbO₂AsO₄.

0

a +, c

Fig. 2. View of the title compound along $[\bar{1}10]$ showing the tunnel where the Na3⁺ cations are located.

Experimental

The title compound was synthesized from stoichiometric quantities of Na_2CO_3 , Nb_2O_5 and $NH_4H_2AsO_4$ according to the following reaction scheme:

The mixture was heated in a porcelain crucible in air and the temperature was increased slowly (10 K h^{-1}) from 523 to 673 K, held at this temperature for 12 h in order to eliminate CO₂, NH₃ and H₂O, heated at 973 K for 72 h after which the furnace was cooled (10 K h^{-1}) to 573 K and turned off to allow the mixture to cool to ambient temperature. The product was obtained as a white crystalline powder.

Crystal data

Na ₂ NbO ₂ AsO ₄	Mo $K\alpha$ radiation
$M_r = 309.81$	$\lambda = 0.71069 \text{ Å}$
Monoclinic	Cell parameters from 25
C2/c	reflections
a = 14.5930(3) Å	$\theta = 10 - 14^{\circ}$
b = 10.8010(2) Å	$\mu = 8.324 \text{ mm}^{-1}$
c = 7.3090(2) Å	T = 293 (2) K
$\beta = 108.35 (2)^{\circ}$	Prism
$V = 1093.46 (4) \text{ Å}^3$	0.020 \times 0.018 \times 0.015 mm
Z = 8	Colourless
$D_x = 3.764 \text{ Mg m}^{-3}$	
D_m not measured	
Data collection	
	1126 and anti-

Enraf–Nonius CAD-4 diffractometer 1126 reflections with $I > 2\sigma(I)$

$\omega/2\theta$ scans	
Absorption correction:	
ψ scan (North <i>et al.</i> ,	
1968)	
$T_{\rm min} = 0.814, T_{\rm max} = 0.883$	
1296 measured reflections	
1199 independent reflections	

Refinement

Refinement on F^2 $\Delta \rho_{max}$ $R[F^2 > 2\sigma(F^2)] = 0.021$ $\Delta \rho_{min}$ $wR(F^2) = 0.057$ ExtincS = 1.192SHI1199 reflectionsExtinc93 parameters0.00 $w = 1/[\sigma^2(F_o^2) + (0.0311P)^2]$ Scatter+ 4.7476P]Interwhere $P = (F_o^2 + 2F_c^2)/3$ Cry $(\Delta/\sigma)_{max} = 0.001$ Cry

 $R_{int} = 0.033$ $\theta_{max} = 26.99^{\circ}$ $h = -17 \rightarrow 18$ $k = 0 \rightarrow 13$ $l = -9 \rightarrow 0$ 1 standard reflection frequency: 120 min intensity decay: 0.7%

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.969 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -1.053 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction:} \\ SHELXL93 \\ {\rm Extinction \ coefficient:} \\ 0.0097 \ (3) \\ {\rm Scattering \ factors \ from} \\ International \ Tables \ for \\ Crystallography \ (Vol. \ C) \end{array}$

Table 1. Selected bond lengths (Å)

Nb1-06	1.765(2)	Na1-O3 ^v	2.549(3)
Nb1-05	1.882(2)	Na1—O3	2.549(3)
Nb1-O5 ⁱ	2.012 (2)	Na2-O1vi	2.304 (3)
Nb1—O4 ⁱⁱ	2.037 (2)	Na2—O6	2.346(3)
Nb1—O2	2.125 (2)	Na2—O5 ^{vii}	2.405 (3)
Nb1-O3 ⁱ	2.210(2)	Na2-O3 ^{viii}	2.433 (3)
As1—O1	1.651 (2)	Na2—O2 ^{ix}	2.591 (3)
As1-O3	1.687 (2)	Na2—O2	2.657 (3)
As1-O4	1.701 (2)	Na3-06	2.333 (2)
As1-O2	1.706 (2)	Na3—O6 ^x	2.333 (2)
Na1-O1 ⁱⁱⁱ	2.355 (3)	Na3-O4 ^{viii}	2.545 (3)
Na1-O1 ^{iv}	2.355 (3)	Na3—O4 ^{vi}	2.545 (3)
Na1—O1 ^v	2.486(3)	Na3—O6 ^{xi}	2.668 (3)
Na1—O1	2.486 (3)	Na3—O6 ^{iv}	2.668 (3)
Symmetry code:	s: (i) $x, 1 - y, \frac{1}{2}$	+ z; (ii) $\frac{3}{2} - x, \frac{1}{2}$	$+ y, \frac{1}{2} - z;$ (iii)

 $\begin{array}{l} 1 - x, 1 - y, -z; (iv) \ x, 1 - \frac{y}{2}, z - \frac{1}{2}; (v) \ 1 - \frac{x}{2}, y - \frac{1}{2} - z; (vi) \\ \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z; (vii) \ \frac{3}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z; (viii) \ \frac{3}{2} - x, \frac{1}{2} - y, -z; (ix) \\ \frac{3}{2} - x, \frac{1}{2} - y, 1 - z; (x) \ 2 - x, y, \frac{1}{2} - z; (xi) \ 2 - x, 1 - y, 1 - z. \end{array}$

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992; Enraf–Nonius, 1992). Cell refinement: *CAD-4 EXPRESS*. Data reduction: *MolEN* (Fair, 1990). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *DIAMOND* (Bergerhoff, 1996). Software used to prepare material for publication: *SHELXL*93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1262). Services for accessing these data are described at the back of the journal.

References

Bergerhoff, G. (1996). DIAMOND. Visual Crystal Structure Information System. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.

Botto, I. L. & Garcia, A. C. (1989). Mater. Res. Bull. 24, 1431-1439.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

Enraf-Nonius (1992). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.

Fakhfak, M., Zid, M. F., Jouini, N. & Tournoux, M. (1993). J. Solid State Chem. 102, 368–374. Haddad, A., Jouini, T. & Piffard, Y. (1992). Eur. J. Solid State Inorg. Chem. 29, 57-63.

Hizaoui, K., Jouini, N. & Jouini, T. (1999). J. Solid State Chem. 144, 53-61.

Lachgar, A., Deniard-Courant, S. & Piffard, Y. (1986). J. Solid State Chem. 63, 409–413.

Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 1974-1976

Heteropoly blue $Rb_{4,4}[H_{0.6}V_{0.6}Mo_{12}O_{40}]$ -14H₂O

CESAR PAY GÓMEZ^a AND LARS ERIKSSON^b

^aDivision of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and ^bDivision of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden. E-mail: cesar@inorg.su.se

(Received 19 April 1999; accepted 27 August 1999)

Abstract

The structure of rubidium tetracontaoxo(hydro)(dodecamolybdo) vanadate tetradecahydrate, $Rb_{4.4}$ [$H_{0.6}V_{0.6}$ - $Mo_{12}O_{40}$]·14 H_2O , has been determined by single-crystal X-ray diffraction. The structure is built up of heteropolyoxy anions with the general formula $XM_{12}O_{40}$ ($X = V^V$; $M = Mo^{V1}$ or V^{IV}) that conform with the Keggin family of structures. These anions are separated by rows of Rb^+ ions with interpenetrating water molecules. The structure is closely related to that of $Na_3[VMo_{12}O_{40}]$ ·19 H_2O reported previously, the main differences being the higher alkali content, the presence of a small amount of V^{IV} in the structure and the partial occupancy of V^V in the tetrahedral polyoxy anion sites of the title compound.

Comment

The present study is part of a project aimed at synthesizing large-cavity polyoxometalates. One of the main goals is to investigate the possibilities of condensing small molecule moieties into larger clusters. The title compound, $Rb_{4.4}[H_{0.6}V_{0.6}Mo_{12}O_{40}] \cdot 14H_2O$, is built up of heteropolyoxy anions (Figs. 1 and 2) with the general formula $XM_{12}O_{40}$, where $X = V^{V}$ and $M = Mo^{V1}$ or V^{IV} , thus conforming to the Keggin-type family of structures (Keggin, 1933). A pseudo-isomorphous sodiumcontaining compound has been reported by Zhang *et*

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved al. (1993). The structure reported here has better defined alkali-ion positions as we avoided the difficulties in distinguishing Na⁺ from O^{2-} by replacing Na⁺ with Rb⁺. The formal oxidation state of V cannot be deduced with certainty from these diffraction data. We have chosen a partially occupied V position, as a large negative residual density (-4.09 e Å⁻³) occurs at the 8c position if V is fully occupied. The conventional R value is decreased from 0.058 to 0.054 only by refining the V occupancy. Furthermore, both the largest positive and negative residual densities were decreased to less than half the original values by introducing the partial V oc⁻upancy.

Fig. 1. A polyhedral representation of the α -Keggin cluster of the title compound. The central tetrahedron is shown with hatched lines.

The presence of reduced species such as Mo^V and V^{IV} in the M sites of the $XM_{12}O_{40} \alpha$ -Keggin cluster has been observed frequently. This is the case in, for example, K₆-(V₂,Mo₁₀)VO₄₀·13H₂O (Björnberg & Hedman, 1980), which is closely related to the title compound. K₆- $(V_2, Mo_{10})VO_{40} \cdot 13H_2O$ is built up of α -Keggin clusters with interpenetrating K⁺ ions and water molecules. The M sites of the $XM_{12}O_{40}$ Keggin clusters are inhabited by Mo^{VI} , V^{IV} and V^{V} . In contrast to the title compound, $K_6(V_2, Mo_{10})VO_{40} \cdot 13H_2O$ belongs to the cubic space group $P\bar{4}3m$, with a = 10.6124(5) Å. In comparing K₆- $(V_2, Mo_{10})VO_{40} \cdot 13H_2O$ with $Rb_{4,4}[H_{0,6}V_{0,6}Mo_{12}O_{40}]$. 14H₂O, we see that every other cluster in the unit cell of the title compound is rotated 90° along all three directions parallel to the main cell axes, giving rise to the doubling of the *a* cell parameter and the *F*-centring of the lattice.